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Optimal storage properties of neural network models 

E Gardner? and B Derridat 
t Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 352, U K  
$ Service d e  Physique Theorique, C E N  Saclay, F 91 191 Gif sur Yvette, France 

Received 29 May 1987 

Abstract. We calculate the number,  p = a N  of random N-bi t  patterns that an  optimal 
neural network can store allowing a given fraction f of bit errors and  with the condition 
that each right bit is stabilised by a local field at least equal to a parameter K. For each 
value of a and  K, there is a minimum fraction f,,, of wrong bits. We find a critical line, 
a,(K)  with a,(O) = 2. The minimum fraction of wrong bits vanishes for a EC cyc( K )  a n d  
increases from zero for a > a,( K 1. The calculations are  done using a saddle-point method 
and  the order  parameters a t  the saddle point are  assumed to be replica symmetric. This 
solution is locally stable in a finite region of the K,a plane including the line, a,(K)  but 
there is a line above which the solution becomes unstable and replica symmetry must be 
broken. 

1. Introduction 

It is well known in the theory of spin glasses that when one considers an Ising 
Hamiltonian, 

with random interactions Jl,, that there are a lot of metastable states (Bray and Moore 
1980, 1981, De Dominicis et a1 1980, Ettelaie and Moore 1985, Derrida and Gardner 
1986, Gardner 1986) (at least at zero temperature). By definition, a metastable state 
at zero temperature is a spin configuration { S,} such that, 

For randomly chosen interactions, J,,, one can then try to calculate the number of 
these metastable states, the distribution of their energies, magnetisations, overlaps. . . . 

In the present paper, we address a different question; given p spin configurations 
(which we call patterns), { S y }  for 1 s is N and 1 c /* G p ,  what is the probability that 
randomly chosen interactions J,, have these patterns as metastable states? This proba- 
bility is related in a simple way to the volume in the space of all J,, in which equation 
(2) is satisfied for all sites i and all patterns p. This question is an important one in 
the theory of neural networks where one usually represents the patterns one wants to 
store by spin configurations { S ? }  and the synapses by pair interactions, J,,. 

Recent work has dealt with cases where is a simple storage rule giving each J ,  as 
a function of the patterns { S ? } .  For example, J,/ = N - '  X w  SySr (Hebb rule) (Hebb 
1949, Little 1974, Hopfield 1982, Amit et a1 1985a, b, 1987a, b), J,] = sgn( N - '  X J L  S?S?) 
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272 E Gardner and B Derrida 

or  more complicated rules (Kohonen 1984, Personnaz et al 1985, Kanter and Som- 
polinsky 1987, Toulouse er a1 1986, Parisi 1986, Mezard et a1 1986). In general, when 
the number, p = a N ,  of patterns is increased, there is a critical value a ,  above which 
the system cannot store the patterns. a ,  depends on the rule used to calculate the J,,. 

The method we use here is similar to a maximum entropy approach since we 
consider that nothing is known about the J,, except that they try to make the patterns 
as metastable as possible. We will now define the problem more precisely. Consider 
p patterns, S: = i 1 (1 =S i p =S p ) .  These patterns are chosen at random 
and remain fixed. For each choice of the J,,, we call p,, ({J , ,})  the number of patterns, 
p, such that a given site i is wrong, 

N and 1 

We say here that a site i is right for pattern p if Sr is not only parallel to the local 
field, h f  = X,J,,S?/(E.,J;)”’ but if also h!S! is greater than a minimal value K .  Of 
course, a wrong site is by definition a site which is not right. For a given number p 
of random patterns, one can ask what is the volume in the space of the J,, which gives 
a certain fraction f of wrong patterns at site i .  If one tries to minimise f for a given 
p ,  then one has to solve an  optimisation problem whose cost function is given by (3). 
It is clear that if a choice of J ,  gives a certain f, the choice AJ,, gives exactly the same 
J So one needs to choose a constraint on the J,., in order to have a finite volume. In 
the present paper, two constraints will be considered, a spherical one in $ 4  2 and 3, 

and an Ising one, 

J,] = i 1 ( 5 )  

Z ( h )  = (exp[-hp,, ({jt,})l){J,l) (6) 

in § 4. The basic quantity that we will consider is a partition function Z( h )  defined by 

where p,, is given by (3). The J,, here play the role of the dynamical variables (which 
are in ‘thermal equilibrium’) whereas the S! are the quenched variables. Expression 
(6) can be easily transformed into 

Several quantities of interest can be computed from a knowledge of Z ( h ) .  For 
example, the average, ( p , )  = pf; the number of wrong patterns at site i is given by 

d 
dh  pf=(ph.)=--In ~ ( h ) .  

In the limit, h + cc, the minimal fraction f,,, of wrong patterns at site i (i.e. the 
fraction f obtained for the optimal choice of the J,, 1 is given by 

d 
pf,,, = lim --In Z ( h ) .  (9) 

11-x dh 
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It is clear from the above expression that the meaningful quantity to study is In Z( h ) .  
We have here restricted consideration to the single-site problem. However, since all 
quantities we are interested in are derived from derivatives of In Z( h ) ,  this problem 
is equivalent to the complete problem where the constraints (3) are fixed at all sites 
provided that the variables J ,  at different sites i are independent. This need not of 
course be true if, for example, a symmetry constraint Jl, = J,l is imposed. 

In 0 2 ,  we calculate In Z, the typical value of In Z, using the replica method (the 
bar means an  average on  the patterns) for the spherical constraint (4). From this 
expression of In Z ( h ) ,  we obtain f m l n  as a function of a = p /  N and K. We also give 
the expression a,( K ) such that f,,, = 0 for a < a,. In 9 3 ,  the stability of the replica 
symmetric solution of 0 2 is analysed. The solution is always stable whenf=  0 (provided 
K is positive). 
This seems reasonable because the space of solutions J,, is connected; any two solutions 
can be continuously deformed into one another (i.e. there is a single valley). If, 
however, the mean fraction of wrong bits is positive, different solutions can correspond 
to errors in different bits and the solution space need not be connected (the set of 
solutions may be composed of many valleys). We find that the solution is stable in a 
finite region of the space, K,  a, f: On the surface of this space where f is a minimum, 
the replica-symmetric solution is stable if a is small enough and  there is a line above 
which it becomes unstable. This therefore provides a new example of a problem where 
replica symmetry has to be broken. In § 4, we will discuss the Ising constraint (5). 
Since the number of possible states of the J,, is finite, the entropy can be calculated. 
We show that, in the replica symmetric approximation, the entropy or logarithm of 
the number of solutions at the minimum value o f f  is always --cc and the replica- 
symmetric solution is unstable. The calculation of the number of solutions is only 
valid in a finite region of the space K ,  J a but not at values of a and K which give 

- 

f m i n (  2 0 )  * 

2. The spherical model 

In order to average In Z ( h ) ,  we use the replica method 

Z " ( h ) -  1 
In Z ( h )  = lim 

"-0 n 

When one introduces replicas (1 
the spherical constraint (4), Z " ( h )  is given by 

a n ) ,  each variable J ,  is replicated, J : ; ,  and with 

where the constant C is just the normalisation of the volume of the space of .Iv, 

In the thermodynamic limit ( N  + cc), Z"(  h )  can be calculated using a saddle-point 
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method since it can be written 

x ( ;Go({qa,}) + G1({vupJ, { E a } )  + i c vapqap . (13) 

The derivation of (13) and the expressions for Go({qap}) and Gl({qap}, { E ~ } )  are given 
in appendix 1. If one assumes that In Z ( h )  is given by a replica-symmetric saddle 

u < P  ) 

point in the limit n + 0, 

qap = 4 pap = iF E,  = i E  

then one gets (see (A1.17) and (A1.18)), 

In Z ( h )  1 ~- - extr-[aG,(q)+ G,(iF, iE)+$nFq]  
N E.F,q n 

where a = p /  N and 

( K  -q' 2 ) (  l - q l - l ' ?  

(277)-1/2 exp(-A'/2) dA) I-, x l n  l + ( e - " - l )  

G,(iF, i E )  = n[E +t  In 277-f ln(2E + F ) + f F / ( 2 E  + F ) ] .  

( 
This leads to the saddle-point equations 

2 ( E + F )  
(2E + F)' 

I =  

F 
' = ( 2 E  + F)' 

and 

F + a ( Go( q )) = 0. 
dq n 

From (18) and (19) it is easy to calculate E and F as functions of q, and one gets 

and therefore the replica-symmetric solution leads to 

exp( - t2/2)  In Z( h )  
~ = extr[ a I_, X 

dt 
N (277)l'? 
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From this expression, one can deduce the minimal fraction fmi, of wrong spins: in the 
limit h + 00 and q + 1, one gets for the leading term 

d t  ( t - K ) '  K 

exp(-r2/2)- - 
( 2 7 r ) ' * 2  2(1 -q )  

-- In Z ( h )  - e x t r [ a (  -1 
N K - [ Z h ( l - q ) ] '  ' 

which can be rewritten as 

dr  exp(-t'/2) ( t  - K)' -- 
K - r  (2?r)"2 X2 

In Z ( h )  
N 

Setting the derivative of (24) with respect to x to zero, one finds that there is an  optimal 
x only if a > CY, where 

The function a , ( K )  is plotted in figure 1. ac(0)  is equal to 2 in agreement with known 
results (Cover 1965, Venkatesh 1986a, b). 

If a < a=,  the extremum is given by 

x=a2 (26a)  

and therefore 

f" = 0 

2 

1 

K 

c 

I I I J 
0 2 4 6 8 

a 

Figure 1. The critical line a , ( K ) .  For a < a , ( K ) ,  the minimum fraction of wrong bits 
f,,, = 0. The line is calculated assumiiig replica symmetry. For K > 0 (full curve) the 
replica-symmetric saddle point is stable around the line a,( K )  whereas for K < 0 (broken 
curve) it is unstable. 
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whereas for a > a,, x is a solution of 

and  fmln given by 

f,,, is plotted in figure 2 as a function of a for K = 0,0.5 and 1. 
These expressions of a,( K ) andf,,, have been obtained assuming replica symmetry. 

We will see in the next section that the replica-symmetric solution becomes unstable 
when a increases. Nevertheless for K > 0, the whole line a,( K )  lies in a region where 
the replica-symmetric solution is stable. Recent numerical results (Krauth and MCzard 
1987) seem to agree with expression (25 ) .  

0 .3  

0.2 

0.1 

0 1 2 3 4 
U 

Figure 2. The minimum fraction, f,,, , of wrong bits as a function of LL for K = 0 (curve 
A), 0.5 ( B )  and  1.0 ( C ) .  

3. Stability of the replica symmetric solution 

An instability of the replica-symmetric solution (14) to the mean-field equations derived 
from equation (13) is determined by a sign change in (at least) one of the eigenvalues 
of quadratic fluctuations in the order parameters qmp, aUp and E,  around the saddle 
point. 

We will first consider the problem of diagonalising the matrices of second derivatives 
with respect to quo of Go and of second derivatives with respect to iQa0 and iE, of 
G,  separately. At the replica-symmetric saddle point, these matrices have the same 
symmetry properties as the matrix of quadratic fluctuations in the Edwards-Anderson 
(1975) order parameters in the Sherrington-Kirkpatrick (1975) model around the 
replica-symmetric solution. The eigenvectors (de  Almeida and Thouless 1978) can be 
divided into two types: those which have the same eigenvalues as longitudinal fluctu- 
ations in the replica-symmetric space and those which are transverse to that space and 
have eigenvalues different from the longitudinal ones. 
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We will consider first the transverse eigenvectors and eigenvalues which are distinct 
from the longitudinal ones. The transverse eigenvectors of Go in terms of fluctuations 
in the variables qop are parallel to those of GI in terms of the variables iaUp and have 
no component in the direction of fluctuations in the variables iq,. In each case there 
is a unique i n (  n - 3)-foid degenerate eigenvalue y1 and y 2  respectively. These eigenvec- 
tors and eigenvalues are calculated in appendix 2. 

The analysis of the longitudinal fluctuations could also be done. It turns out that 
there are three distinct eigenvalues in the longitudinal direction, and also a set of 
3( n - 1) transverse eigenvalues which are degenerate with the longitudinal ones. Since 
the replica-symmetric solution for E, F and q is unique, the solution should be stable 
with respect to fluctuations in this three-dimensional space, and therefore these eigen- 
vectors should not lead to an instability. 

The transverse eigenvalues of the quadratic fluctuations in the function 

aGo(q0,) + GI ( E o ,  (Pop ) + iqop(Pap (29) 

on the right-hand side of equation (13) are therefore given by the two eigenvalues of 
the matrix, 

In the limit a+O, and hence q+O, the product of these eigenvalues is -1. The 
replica-symmetric result is correct in this limit since it is simply an integral over the 
phase space of couplings JG, and the result therefore must be stable. The sign is 
negative because of the change of variable from to iQUp. The product can also 
be evaluated in the limit a + aC, q + 1. A sign change in the product implies that one 
of the eigenvalues has changed sign for some value of a less than ac .  The replica- 
symmetric solution is unstable and the cost function calculations of the previous section 
therefore invalid if 

%Y1, Y2' 1. (31) 
From appendix 2, (31) holds if 

1 d t  exp(-t2/2) 
X- exp[(K -x)'/2]> K ( K  - t )  ( 27r)1'2 

2 

K 
1 

0 1 2 3 4 
a 

Figure 3. The critical line a,( K 1 and the  line where the replica-symmetric solution becomes 
unstable. 
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In the limit x+cc or the fraction of errors -0, the product of eigenvectors has the 
same sign as at a = 0. However, as the fraction of errors increases, x decreases and  
the solution becomes unstable. For example, for small x (x<< K )  inequality (32) is 
always satisfied and the solution is always unstable. The instability line in the a , K  
plane is plotted in figure 3. 

4. The Ising model 

In this section, the calculation of § 2 will be repeated for the Ising constraint (equation 
(5)).  Since the number of points in the phase space of interactions is finite for this 
constraint (for finite N ) ,  the total number i2 of solutions for a fraction f of wrong 
bits is given by 

- _ _ _  d In Z ( h )  
In R = In Z ( h )  - h (33) dh  

where h can be calculated as a function off using equation (8). In the replica approach, 
we have again to consider Z " ( h ) ,  

where Go is given by equation (16) while G, is given assuming replica symmetry (14) 
by 

du  exp(-u2/2) 
{ln[2 cosh(uf i ) ] -$F}  

- x  (2n)"' ( 3 5 )  

(see A1.21). The mean-field equation for F implies 

as q -+ 1 and 

nF9 n 
G I  +-+- 

2 7 r ( l - q ) '  (37) 

The cost function, J ;  can therefore be expressed as an  extremum over x as in 
equation (24) except that the last .x-' term is multiplied by a factor 2/7r. This is 
equivalent to multiplying a by a factor of ~ / 2 ,  and so equation (27) becomes 

while f m i n  is given by equation (28).  In particular, in the limit f m l n + O ,  x + s  and 
K = 0, the upper storage capacity CY, is given by 

a ,  = 4/ T.  (39) 

I n  contrast to the spherical model calculation where there is a region of the a,K plane 
where the replica-symmetric solution is stable, and  fm, ,  > 0, the Ising calculation is 
always incorrect as 9 -+ 1. Clearly equation (39) is incorrect since the maximum amount 
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of information which can be stored must be less than the number of bonds, and so a,  
must be less than 1. The entropy or logarithm of the number of solutions can be 
calculated and  as q + 1 or fmi, + 0 we find 

m n / N  - ln ( l  - q ) +  --CO 

implying an  infinite negative entropy. The stability calculation of 9: 3 can also be 
repeated for this case and  the product of the distinct transverse eigenvalues tends to 
infinity in this limit, implying that there is a sign change in one of the eigenvalues for 
some value of q less than 1. 

The Ising calculation, of the number of solutions R of equation (33), is valid only 
for sufficiently small values of q. Specifically, there is a surface in the a,f; K space on 
one side of which replica symmetry must be broken. In particular, the calculation of 
fmln  always requires replica-symmetry breaking. 

5. Conclusions 

In this paper, we have calculated the fractional volume of phase space with a given 
value of K and of the fraction of wrong bits f: In particular the minimum cost function, 
f m i n ,  has been calculated. All of these results, however, have been obtained assuming 
replica symmetry for the order parameters at  the saddle point. For both constraints-the 
spherical one (4) and the Ising one (5)-there is a surface in the space K ,  a, f on one 
side of which this replica-symmetric solution is unstable and the calculations must 
therefore be incorrect. For the spherical constraint, the calculations are stable in a 
finite region of the K ,  fml, plane around f m l n  = 0 and K > 0, whereas in the Ising case, 
the solution is unstable throughout this plane. 

The calculational method of 9 2 has been used in other situations, for example, to 
deal with correlated patterns (Gardner 1987, 1988a). It can also be extended in order 
to calculate the size of basins of attraction in a diluted version of this model (Gardner 
1986b) where finite values of K > 0 d o  imply finite basins of attraction which increase 
with the magnitude of K .  

Since explicit solutions for the optimal Jy d o  not exist, it is important to have 
numerical methods for constructing them. For f = 0, extensions of the perceptron 
learning algorithm (Rosenblatt 1962, Minsky and Papert 1969) d o  exist which converge 
to solutions provided these solutions exist (Gardner 1988a, Krauth and MCzard 1987). 
These algorithms therefore generate exact storage with finite basins of attraction 
provided such solutions exist. Other algorithms which aim to give solutions with finite 
basins of attraction have also been discussed (Gardner et a1 1987, Diederich and Opper 
1987, Poppel and Krey 1987). 
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Appendix 1 

In this appendix, we show how equation (1 1) leads to expressions (13) and (14) and 
we calculate the explicit expressions for the functions Go and G I  for the replica- 
symmetric solution. If  the 0 functions in (1 1) are replaced by 

Then Z " ( h )  becomes 

Averaging over the patterns, Sy, we get a coupling between replicas 

( A l . l )  

(Al.2) 

(A1.3) 

Where N is large, it is only necessary to keep the first term in the expansion of the cosine 

and Z " ( h )  therefore becomes 

(A1.4) 

(A1.5) 

where 

which can be easily transformed into 

xeh; -$e (x;): 
, a  

(A1.7) 

where we have used the fact that 
introduce 

(J;)' = N. For each pair of replicas, one can then 

(A1.8) 
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Then, one obtains 

where 

(A1.9) 

(A1 . l o )  

where p is the number of patterns and 

exp G ( { c p , p } ,  { E , ) )  = n  dJP exp ( A l . l l )  

Expressions (A1.lO) and ( A l . l l )  can be greatly simplified when the calculation is 
limited to the replica-symmetric subspace 

E,[(JP)'- 11 - i  c cp,,JPJf3 . 
OL 1 

qap  = 9 f f # P  ( A l .  12) 

cpap=cp=iF f f # P  
E , = E = ~ E  for all a 

and one obtains 

( A l .  13) 

( A l .  14) 

( A l .  1 5 )  

and 

G , ( i F , i E ) = n E + f n  In(27r)-fn l n (2E+F) - f ln [ l -Fn / (2E+F) ] .  (A1.16) 

In the limit, n + 0, one gets, 

exp(-tZ/2) d t  
--Jc (2T)"* 

( K - r q '  > ) ( I - q ) - '  2 

x l n  1 +(e-'- l ) l - s  exp( -A 2/2)(27r)-1'2 dh ) (A1.17) ( 
and 

G, ( q )  = n [  E + f  In 27r - ln(2E + F )  + i F / ( 2 E  + F ) ] .  (A1.18) 
This completes the calculation in the spherical case. In the Ising case, the calculation 
is almost the same. The differences are the following. The variables E, disappear 
everywhere (in (A1.2), ( A l S ) ,  (A1.6) and (A1.9)) so that GI in (Al .11)  becomes a 
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function of the p a p  only. The integrals over the JG are replaced by sums over the two 
values +1 and -1. Therefore, ( A l . l l )  becomes 

Assuming the replica symmetry, 

p a p  = iF a + P  

one gets 

(A1.19) 

(Al.20) 

du  
exp GI(  F )  = exp( -4nF) exp{-u2/2+ n ln[2 cosh(ufi)]}.  (A1.21) 

Everything else remains the same and, in particular, Go is unchanged. 

Appendix 2 

In this appendix, the transverse eigenvectors and eigenvalues of the matrices, 
a2Gn/aqap aqys and a2Gl/a(ipo,p)a(icpys) will be calculated. From equation (A1.10) 

where ( ) is defined 

At the replica-symmetric saddle point, (A2.1) can take three possible values: 

(A2.1) 

(A2.2) 

(A2.3) 
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where f(x)[ t ]  is defined 

I-' X 

x 1 dx exp[ixh -+( 1 - q)x'] 
- X  

(A2.4) 

since the denominator of equation (A2.2) tends to one in the limit n + 0 and equation 
(A2.4) is obtained using the same method as in appendix 1. The matrix (A2.1) is thus 
of the same form as that in the de  Almeida-Thouless calculation (1978) and the 
transverse eigenvectors T~~ have the form, 

p P n  = c 

(A2.5) 

where cyo and Po are a particular pair of replicas. In order that the eigenvector is 
normal to the n eigenvectors which are degenerate with the longitudinal eigenvectors, 
the conditions 

c = ( 2 - n ) d  d = $ ( 3 - n ) e  (A2.6) 

must be satisfied. Substitution of conditions (A2.6) into the eigenvalue equation gives 
an  n ( n  -3)/2-fold degenerate eigenvalue 

- X 

P - 2 Q +  R = 1 d t  e ~ p ( - t ~ / 2 ) ( 2 . i r ) - ' ~ ~ ( x ~ ( t ) - ( f [ t ] ) ~ ) * .  (A2.7) 
J - X  

The evaluation of this integral in the limit q +  1 is similar to the method used in 
appendix 1. In this limit, the integral over t is dominated by values of t ,  

0 < K - f i r  < x (A2.8) 

and 

n[t] = (1 -e-')i exp[-(K - f i r )2 /2 (1  - q ) ]  

(A2.9) 

and so y1 diverges as q - ,  1, 

(A2.11) 

The calculation of the transverse eigenvalues of d2G,/dicpmp&cpy6 is similar. The 
eigenvectors are again given by (A2.5) and (A2.6) and the eigenvalue by P ' -2Q '+  R' 
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where 

and y 2  can be found easily 

y z = ( 1 - d 2 .  

(A2.12) 

( A2.13) 
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